FEATURED POST ON MATHS MCQ
Maths MCQ Ch-11 Class 10 | Area Related to Circle
- Get link
- X
- Other Apps
MCQ | CHAPTER 11 | CLASS 10
Area Related to the Circles
Q 1) What is the formula for the circumference of a circle?
a) C = 2πd
c) C = 2πa
d) C = 2πs
Q 2) What is the formula for the area of a circle?
a) A = πd2
b) A = πs2
c) A = πr2
d) A = πa2
Q 3) The circumference of the circle having diameter 8.4 cm is
a) 25.2 cm
b) 26.4 cm
c) 28 cm
d) 27.6
(a) 30 cm
(b) 3.14 cm
(c) 31.4 cm
(d) 40 cm
Q 5) What is the circumference of a circle if the radius is 7 m?
a) 8 m
b) 2 m
c) 44 m
d) 22 m
Q 6) Area of the circle with radius 5cm is equal to:
a) 60 sq.cm
b) 75.5 sq.cm
c) 78.5 sq.cm
d) 10.5 sq.cm
Q 7) Find the area of the circle whose circumference is 44 cm.
a) 154 cm2
b) 308 cm2
c) 77 cm2
d) 231 cm2
a) 1.35 m
b) 6.54 m
c) 18.00 m
d) 8.05 m
Q 9) Find the radius of the circle if the circumference is 12 m.
a) 1.90 m
b) 1.09 m
c) 7.90 m
d) 1.40 m
a) r2
b) 1/2r2
c) 2r2
d) √2r2
a) √0.83 m
b) 5 m
c) √0.63 m
d) √38 m
(a) 14:11
(b) 22:7
(c) 7:22
(d) 11:14
a) 28 cm
b) 42 cm
c) 56 cm
d) 16 cm
a) 36 π cm2
b) 16 π cm2
c) 12 π cm2
d) 9 π cm2
Given, Side of square = 8 cm
Diameter of a circle = side of square = 8 cm
Therefore, Radius of circle = 4 cm Area of circle = π(4)2 = 16π cm2
a) 256 cm2
b) 128 cm2
c) 642 cm2
d) 64 cm2
Ans: b
Solution Hint
Radius of circle = 8 cm
Diameter of circle = 16 cm = diagonal of the square
Let “a” be the triangle side, and the hypotenuse is 16 cm
Using Pythagoras theorem, we can write
162 = a2 + a2 ⇒ 256 = 2a2 ⇒ a2 = 256/2 ⇒ a2 = 128 = Area of a Square
(a) 142/7
(b) 152/7
(c) 132/7
(d) 122/7
Solution Hint
Angle of the sector is 60°
Area of sector = (θ/360°) × π r2
∴ Area of the sector with angle 60°
a) Large
b) Major
c) Big
d) Wide
a) Small
b) Narrow
c) Minor
d) Tiny
a) 2
b) 3
c) 4
d) 1
Solution Hint : A circle contains two sectors. The sector having a larger area is called a major sector and the sector having a smaller area is called a minor sector.
Q 20) In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. The length of the arc is;
a) 20cm
b) 21cm
c) 22cm
d) 25cm
a) 0.07 m
b) 0.47 cm
c) 0.79 m
d) 0.57 cm
a) 200 cm2
b) 220 cm2
c) 231 cm2
d) 250 cm2
Q 23) Area of a sector of angle p (in degrees) of a circle with radius R is
b) p/180 × π R2
c) p/360 × 2πR
d) p/720 × 2πR2
b) 22 cm
c) 44 cm
d) 55 cm
Solution Hint
Given, Area of a circle = 154 cm2
πr2 = 154 ⇒ (22/7) × r2 = 154
a) (πr2θ)/360
d) (2πrθ)/180
a) 10 m
b) 15 m
c) 20 m
d) 24 m
Q 27) The radius of a circle whose circumference is equal to the sum of the circumferences of the two circles of diameters 36 cm and 20 cm is
b) 42 cm
c) 28 cm
d) 16 cm
a) 441 cm2
b) 462 cm2
c) 386 cm2
d) 512 cm2
a) 50
b) 100
c) 500
d) 1000
Solution Hint
Circumference of the wheel = 2πr = 2 × (22/7) × 35 = 220 cm
Speed of the wheel = 66 km/hr = (66 × 1000)/60 m/min
= 1100 × 100 cm/min = 110000 cm/min
a) 2 units
b) π units
c) 4 units
d) 7 units
a) 77 cm2
b) 77/8 cm2
b) 35.5 cm2
c) 77/2 cm2
a) 16.7 cm
b) 15.7 cm
c) 15.2 cm
d) 14.7 cm
Q 33) In a circle of radius 14 cm, an arc subtends an angle of 30° at the centre, the length of the arc is
b) 28 cm
c) 11 cm
d) 22/3 cm
Q 34) An arc of a circle is of length 6π cm and the area of the sector is 21π cm2. Find the diameter.
b) 7 cm
c) 21 cm
d) 10.5 cm
Ans: a
Solution Hint Find the radius by using the relation :
Q 35) The difference between circumference and diameter of a ring is 10 cm. Find the radius of the ring.
a) 3.07 cm
b) 0.37 cm
c) 2.33 cm
d) 4.57 cm
Solution Hint Circumference – Diameter = 10 cm (∵ Diameter = 2 × radius)
2πr – 2r = 10 cm ⇒ 2r(π – 1) = 10 cm
Q 36) The difference between the circumference and radius of a circle is 37 cm then area of the circle is
a) 111 cm2
b) 184 cm2
c) 154 cm2
d) 259 cm2
b) 2.74 m
c) 2.33 m
d) 4.57 m
Q 38) If the diameter of the semi-circular plot is 21 cm, then its perimeter is
b) 27m
c) 42 m
d) 56 m
Solution Hint
Q 39) Ratio of areas of two circles is 9 : 16. Find the ratio of their circumferences.
a) 9 : 16
b) 3 : 4
c) 16 : 9
d) 4 : 3
a) 40 %
b) 42 %
c) 44 %
d) 45 %
Solution Hint
Find area by taking radius r
Find new area by taking radius = r + 20% of r
Ans:
c
Solution Hint
Take diameter = 2r and radius = r
Find area by taking radius r
Find new area by taking radius = (2r + 20% of 2r)
Find the difference of two areas
Ans: b
a) 42 cm2
b) 48 cm2
c)
38.5 cm2
d)
77 cm2
Ans: c
a) 54 cm2
b)
42 cm2
c)
48 cm2
d)
36 cm2
a)
16.3 cm2
b)
17.3 cm2
c)
18.8 cm2
d)
18.3 cm2
b)
231 cm2
c)
308 cm2
d)
316 cm2
a) 54 cm2
b) 42 cm2
c)
56 cm2
d)
48 cm2
b)
1416 cm2
c)
1308 cm2
d)
1386 cm2
b)
154 cm2
c)
308 cm2
d)
77 cm2
a)
36 cm2
b)
18 cm2
c)
12 cm2
d)
9 cm2
a)
256 cm2
b)
128 cm2
c)
64 cm2
d)
77 cm2
Questions
from CBSE Sample paper 2021-22
Basic
Mathematics (241)
Q 52) In a circle of diameter 42cm ,if an arc subtends an angle of 60 ̊ at the centre where 𝜋 = 22/7,then the length of the arc is
a) 22/7 cm
b) 11cm
c) 22 cm
d) 44 cm
Ans: c
a) Half
b) Double
c) Three times
d) Four times
Ans: d
Q 54) If the difference between the circumference and the radius of a circle is 37cm , 𝜋 = 22/7, the circumference (in cm) of the circle isa) 154
b) 44
c) 14
d) 7
Q 55) The perimeter of a semicircular protractor whose radius is ‘r’ is
a) 𝜋 + 2r
b) 𝜋 + r
c) 𝜋 r
d) 𝜋 r + 2r
Perimeter of protractor = Circumference of semi-circle + 2 x radius = 𝜋 r + 2r
Q 56) Area of a sector of a circle is 1/6 to the area of circle. Find the degree measure of its minor arc.
(a)
90 ̊
(b)
60 ̊
(c)
45 ̊
(d)
30 ̊
Standard Maths SPQ (041)
Q 57) The number of revolutions made by a circular wheel of radius 0.7m in rolling a distance of 176m is(a)
22
(b)
24
(c)
75
(d)
40
(b)
49 cm2
(c)
98 cm2
(d)
49π/2 cm2
Ans:
c
Solution Hint
Shaded area = Area of semicircle + (Area of half square – Area
of two quadrants)
=
Area of semicircle + (Area of half square – Area of semicircle)
(b)
(π/6 - √3/4) cm2
(c)
4(π/6 - √3/4) cm2
(d)
8(π/6 - √3/4) cm2
Ans: d
Solution Hint
Let O be the center of
the circle. OA = OB = AB = 1cm.
So ∆OAB is an equilateral triangle and ∴ ∠AOB = 60°
(a)
50√2 cm
(b)
100/π cm
(c)
50√2/π cm
(d)
100√2/π cm
- Get link
- X
- Other Apps
Comments










Very nice
ReplyDelete