MCQ | Class 12 | Chapter 2
INVERSE TRIGONOMETRIC FUNCTIONS
MCQ | CHAPTER 2 | CLASS 12 Q 1) The value of
is =
a) -1 b) 1
\:%20\:%20\frac{-\pi%20}{4})
Ans: d
Q 2) The value of
is equal to
Ans: d
Q 3) The value of sin-1{cos (4095o) is equal to
\:%20\:%20\frac{\pi%20}{4})
Ans: c
Q 4) The value of \:%20=)
Ans: b
Q 5) The value of \:%20\:%20is)
\:%20\:%20\frac{1}{x})
b) x
\:%20\:%20\:%20\frac{1}{\sqrt{1+x^{2}}})
\:%20\:%20\:%20\frac{x}{\sqrt{1+x^{2}}})
Ans: b
Q 6) The value of ]\:%20\:%20is=)
a) - 60 b) -30 c) 30 d) 150
Ans: c
Q 7) The value of 
\:%20\:%20\:%20\frac{\pi%20}{4}-\frac{x}{2})
\:%20\:%20\:%20\frac{\pi%20}{4}-x)
Ans: a
Q 8) The value of \:%20\:%20is=)
\:%20\:%20\:%20sec^{-1}x)
Ans: c
Q 9) The value of
is =
Ans: a
Q 10) The principal value of \:%20\:%20is=)
Ans: d
Q 11) Sec2(tan-12) + cosec2(cot-13)
=
a) 5 b) 13 c) 15 d) 16
Ans: c
Q 12) 
d) None of these
Ans: b
Q 13) %20\right%20]\:%20\:%20is=)
\:%20\:%20\frac{1}{\sqrt{5}})
Ans: c
Q 14) If
, then x =a) 1
d) None of these
Ans: c
Q 15) The value of )
d) None of these
Ans: b
Q 16) If
, then x is equal to a) 1
c) 0 \:\:\frac{\sqrt{3}}{2})
Ans: a
Q 17) Principal value of
is
Ans: d
Explanation:
Q 18) If
, then find the value of 
\:%20\:%20\frac{2\pi%20}{3})
Ans: c
Explanation
Q 19)
is equal to a) -1 b) 1
\:%20\:%20\frac{-\pi%20}{4})
Ans: d
Q 20) \right\}%20\right%20]%20=)
Q21) The value of
is equal to a) 
b) 
c) 
d) 
Ans b
Explanation

Q22) If
then the value of x + y2 + z3 is a) 1 b) 3 c) 2 d) 5
Ans: b
Explanation

Q23 Principal value of the expression
is
a) 
b) 
c) 
d) 
Ans : a
Q24) The value of tan2(sec-12)
+ cot2(cosec-13) is
a) 5 b) 11 c) 13 d) 15
Ans: b
Q25) The value of
is a) )
b) )
c) )
d) )
Ans : c
Q26) Find the value of -cot^{-1}\left%20(%20-\sqrt{3}%20\right%20))
a) π
b) 
c) - π
d) 
Answer: b
Explanation
%20\right%20])
Q27) If sec-1x
+ sec-1y =
, then the value of cosec-1x + cosec-1y is a) π b) π/2 c) 3π/2 d) -π
Answer b
Explanation
sec-1x + sec-1y = 
⇒
- cosec-1x +
- cosec-1y = 
⇒
- cosec-1x - cosec-1y = 0 ⇒ cosec-1x + cosec-1y = 
Q28) =)
a) 5 b) 9 c) 12 d) 7
Answer 7
Explanation
= =tan^{-1}\left%20(%20\frac{2/3}{8/9}%20\right%20))
=tan^{-1}\left%20(%20\frac{3}{4}%20\right%20))
Now by using the formula
=\frac{1+tan\theta}{1-tan\theta})
Given equations becomes
Q29) If 3sin-1x
+ cos-1x = π, then x is equal to
a) 0
b) 
c) -1
d) 1/2
Answer b
Explanation
3sin-1x + cos-1x = π
2sin-1x + (sin-1x + cos-1x) = π
2sin-1x + π / 2 = π
2sin-1x = π - π / 2 = π / 2
sin-1x = π / 4
x = sin(π / 4) = 
Q30) If
, then the value of x is
a) 
b) 
c) 
d) None of these
Ans: a
Explanation
=2tan^{-1}\beta)
=2tan^{-1}x)
Using these values in the given equation we get

Q31) The value of :
is a) 
b) 
c) 
d) 
Answer a
Q32) The value of : +sin^{-1}\left%20(%20\frac{1}{3}%20\right%20))
a) 
b) 
c) 
d) 0
Answer c
Q33) The value of expression
is Answer b
Q34) The value of :
is a) 5 b) 13 c) 15 d) 25
Answer c
Q35)
is equal to a) 1/2 b) 1/3 c) 1/4 d) 1
Ans d
Q36)
is equal to a) 1/5
b) 
c) -1/5
d) 
Answer: d
Q37) The value of
is
Answer c
Q38) Evaluate:
is
Answer: c
Q39) Find the value of : %20%20\right%20])
Ans: 1
Q40)
, state true or false Ans: False
Q41) What is the Principal branch of tan-1x
Ans )
Q42) If
then find the value of x Ans 1
Q43)
state true or false Ans : False
THANKS FOR YOUR VISIT
PLEASE COMMENT BELOW
🙏
Inverse trigonometry deals with finding the angle from the given ratio of sides in a right triangle. It's the opposite of regular trigonometry, which finds ratios given an angle. Functions like arcsine, arccosine, and arctangent are used to calculate these angles. They provide the angle measure corresponding to a specific trigonometric ratio. Inverse trigonometric functions are essential in various fields like engineering, physics, and navigation for solving problems involving angles and sides in triangles. They offer a way to reverse the effects of trigonometric functions, aiding in problem-solving and analysis.
ReplyDelete